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It has been shown in the literature that the control of nonlinear structural systems using linear 
control techniques may not be effective. The permanent displacement of the structure due to 
material nonlinearity and damage may be reduced but not completely removed. In this paper we 
present a control method based on a linearized model of the structure in a predetermined desired 
states. Around each working state, a local Generalized Minimum Variance Control (GMV) is 
derived and applied. This method is commonly known as the Gain scheduling technique. We have 
used the decision algorithm for what local controller must be activated or disactivated. Simulation 
tests are performed using a single-degree-of-freedom nonlinear structure. The above mentioned 
approach shows to be effective in reducing the dynamic response and preventing the permanent 
displacement. 
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1.  Introduction 

 

Real world structural buildings often exhibit nonlinear behavior even if they are assumed 
to be well described by a linear model. The nonlinearity in structures is caused either by 
large displacements or material nonlinearity and damage. The problem is that most structural 
control techniques are designed assuming a linear behavior of the structure to be controlled 
[9]. These techniques may be efficient if the structural response remains within the linearly 
elastic range. But its performances will be severely degraded if the structure reaches the 
nonlinear range, especially in the case of severe earthquakes which causes large 
displacements and damage. In other hand, traditional techniques for analysis and synthesis of 
nonlinear controllers exist, but they are limited to specific classes of nonlinear systems. 

Many researchers have addressed the problem of nonlinear structural control. Bani-Hani 
et al [3] used the potential of neural networks to control a nonlinear 3DOF structure. They 
demonstrated that the nonlinearly trained neurocontroller was able to reduce the structural 
damage and prevent the permanent displacement more than the linearly trained 
neurocontroller. In [17] the authors combined both base isolation and feedback control 
applied to a distributed parameter system. The nonlinear control consisted on a modified 
on-off with a two-tiered dead zone. An adaptive control algorithm based on sliding mode 
concepts for nonlinear uncertain dynamical systems is developed by Ghanem et al [14]. 
Yang et al [16] have applied the instantaneous on-line optimal control algorithm in 
nonlinear structural control. 
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In this paper, a generalized minimum variance algorithm using the gain scheduling 
technique is presented. First, we linearize the nonlinear model of the structure around a 
number of desired states representing regions of evolution of the structural response. 
Around each state, an Auto-Regressive Moving Average- eXogen (ARMAX) model of the 
structure is determined and a local GMV control law is developed. The control consists on 
switching-on or switching-off a local GMV controller depending on the actual state of the 
system. This procedure (overbalancing between controllers when the state evolves from a 
region of linearization to another) is commonly known as the gain scheduling technique.  

The approach is simulated using a SDOF nonlinear structure and the effectiveness is 
demonstrated in reducing the amplitude of vibrations and completely preventing the 
permanent displacement of the structure. 

 
2. Nonlinear structural model 

In this section, we are interested in formulating the dynamical equations of motion of a 
nonlinear single-degree-of-freedom structure under seismic excitation. In order to establish 
the dynamical model, the following assumptions are considered [5]:  

1. the structure is supposed to be a lumped mass m in the girder  
2. the two vertical axes are weightless and inextensible in the vertical direction with 

spring constant k/2 each. 
Application of force equilibration principle to the nonlinear SDOF system shown in 

figure 1 gives 
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where  m is the structural mass 
 

 
 
 

 
 
 
 

 
 

 
Figure 1. Single-degree-of-freedom structure 

m
k=0ω  is the linear natural frequency of the structure, with k the elastic stiffness 

02 ωξ m
c= the damping ratio, with  c the internal viscous damping of the structure 

α is the rigidity ratio 
x(t) is the relative displacement 

)(txg  is the ground acceleration 
u(t) is the external control force 

z is the non linear hysteretic displacement defined by the following first order non-linear 
differential equation [5] 
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where β, γ, n, η, ν and h(z) are parameters that define the hysteretic behavior. More 
details on these parameters can be found in reference [5]. 

In this paper, we are interested on a simple nonlinear model called the Bouc-Wen 
original model, obtained from equation (2) by setting h(z)=1, ν=η=1 and n=1. Thus 
from herein, the nonlinear displacement is defined by 

zxzxxz γβ −−=                                   (3) 

Because of the versatility and mathematical tractability of the Bouc-Wen model and 
its extensions, it has been widely used and applied to a variety of engineering problems, 
including SDOF and MDOF structural buildings. Although this model violates some 
plasticity postulates based on conservation laws [3], it has been shown to give accurate 
results. 

By choosing the state space vector [ ] [ ]zxxxxxX T == 321 , equations (1) and (3) 
may be written in the following form 
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3. ARMAX Model of the structure 
 
To formulate an optimal control problem, it is necessary to specify the process dynamics 
and its environment. It is assumed that the influence of the environment on the process can 
be characterized by disturbances, which are stochastic process. As the system is nonlinear, 
we first linearize its model around a desired state. Then, using the principle of superposition 
we can represent all the disturbances as a single disturbance acting on the output. It is 
assumed that this disturbance is a stationary Gaussian process with rational spectral density.  

The ARMAX (Auto Regressive Moving Average eXogen) model is used to represent the 
effect of both the control and disturbances on the system output. This model is well suited 
for stochastic optimal control problems [  ]. 

The state space equation (4) may be written in the following linearized form 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

−+−−−−=

=

323

3
2
01

2
0202

21

1)1(2

bxaxx

xu
m

xxxx

xx

gωααωξω                      (5) 

where 

{ }

{ }
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−−=
∂
∂

=

−−=
∂
∂

=

0
0

0
0

)(

)(1

322
3

3

323
2

3

x
x

x
x

xsgnxx
x
x

b

xxsgnx
x
x

a

γβ

γβ

                                                      

x0 indicates the state around which the linearization is made. 
Using equations (5), we ca deduce the continuous ARMAX model given by 
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where )(et  )(),( sXsUsX g  are the Laplace transforms of )(et  )( ),( txtutx g  respectively. 
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Depending on the model of seismic excitation, different ARMAX models can be 
obtained, and the following cases arise 

The seismic excitation model is unknown or is not taken into consideration. Thus, the 
earthquake acceleration is supposed to be a white noise excitation. The discrete ARMAX 
model of the structure is obtained directly by discretization of equation (7). Discretization 
techniques are readily available in computer programs (MATLAB 5.2) 
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1−q  shift operator defined as ( ) ( )txtxq =+− 11  
The polynomial parameters can be obtained by analytical discretization of equation (7) 

using the Z-transform. 
 

4. Generalized minimum variance control  
 
The Generalized Minimum Variance (GMV) algorithm was introduced by Clarke [4],[5] to 
control non-minimum phase systems. It is an extension of the Minimum Variance algorithm 
[1][2] which, by choosing a certain performance criterion, attempts to minimize the 
variance of the output. 

The ARMAX model of the system is used 
( ) ( ) ( )teqCtuqBqtyqA d )()()( 111 −−−− +=                        (9) 

where 
n
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1 1)(  noted A, B and C 
0≥d  is the time delay of the system 

y(t) process output 
u(t) control 
e(t) white noise with zero mean and of variance σ2. 
The polynomial C is stable. 

The performance index to be minimized is 
( ) ( )( ) ( )( )[ ]22 '11 tuQdtwRdtPyEJ w +++−++=                        (10) 

where 
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E mathematical ensemble average 
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The degrees of P and Rw can be chosen arbitrarily.  
Using equation (9) in equation (10), we derive the GMV control strategy given by [9] 
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Figure 2. Generalized Minimum Variance control architecture 
 
5. Generalized minimum variance control using gain scheduling  
 
The gain scheduling strategy is a nonlinear control approach, which permits the extension 
of classical linear control algorithms to nonlinear systems. It is based on the linearization of 
the controlled process in a number of desired states. Then a linear controller is synthesized 
around each state based on the linearized model. The control consists of using operating 
one of these linear controllers depending on the evolution of the state of the controlled 
process. A schematic representation of this control strategy is shown in figure 3. 

 

 

 

 

 

 

 

 

 

Figure 3. The gain scheduling Strategy 
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(1) linearize the nonlinear structural model in a number of chosen states. Then divide the 
state space into operating domains surrounding the states of linearization 

(2) In each domain, and based on the linearized model, derive an ARMAX model of the 
structure, then a GMV controller is synthesized 

(3) Operate the ith GMV controller when the state of the system is in the corresponding 
domain 
 

6. Mathematical model of earthquake ground motion 
 
The earthquake ground acceleration is modeled as a uniformly modulated non-stationary 
random process [7,9]  

( ) ( ) ( )txttx sg ψ=                                       (12) 

where ψ(t) is a deterministic nonnegative envelope function and ( )txs  is a stationary 
random process with zero mean and a Kanai-Tajimi power spectral density [7]  
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where ξg , ωg are filter parameters and S0 is the constant spectral density of the white noise. 
However, it can be shown that the velocity and displacement spectra, which are derived 
from the acceleration spectra that are described by equation (16), have strong singularities 
at zero frequency. These singularities can be removed by using high-pass filter, as 
suggested by Clough-Penzien [6]. Using such a second high pass filter, the Kanai-Tajimi 
spectrum is modified as follows to obtain the Clough-Penzien spectrum [9] 
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A particular envelope function ψ(t) given in the following, will be used 
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where t1 , t2 and a are parameters that should be selected appropriately to reflect the shape 
and duration of the earthquake ground acceleration.  
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7. Simulation results 
 

The Kanai-Tajimi and Clough-Penzien ground accelerations have been simulated and are 
presented in figure 4. Numerical values of parameters are t1=3s, t2=13s, a=0.26, ξg=0.65, 
ωg=19rad/s, ξc=0.6, ωc=2rad/s, S0=0.8 10-2m/s. 

Sample hysteresis plot of the SDOF structure under white noise excitation with power 
spectral density S0=10 is shown in figure 5. The following structural parameters are 
considered : m=2000 kg, ω0=2 rad/s, ξ=0.05, α=0.1, β=1.5, γ=-0.5. 
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(a) Kanai-Tajimi model 
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(b) Clough-Penzien model 

Figure 4. Simulated ground accelerations 

-1 -0.5 0 0.5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

relative displacement x (m)

z

 
Figure 5. Sample hysteresis plot of nonlinear SDOF structure under white noise excitation 
 
Simulation tests have been performed to evaluate the performances of the control approach 
presented in this paper, using the nonlinear SDOF structure described in section 2. We have 
linearized the structural model in 4 points corresponding to 4 operating domains. 

To implement the GMV algorithm we have used a sampling period Te =0.02s. parameters 
of ARMAX models. Ponderation polynomials are PN(q-1)=1-0.01q-1, PD(q-1)=1,  
Q(q1)=5.10-6 . 
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Responses of the structure to 300% of Kanai-Tajimi seismic excitation with S0=1 are 
shown in figures 6,  
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Figure 6.a The relative displacement 
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Figure 6.b The relative displacement 
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Figure 6.c The active control force 

Figure 6. The gain scheduling approach 
 

8. Conclusion  

We have investigated in this paper a control approach, the gain scattering control, which 
permits the extension of linear control algorithms to nonlinear systems. Simulation results 
have shown the efficiency of this control technique in reducing the relative displacement 
and preventing the permanent displacement due to the nonlinear behavior of the structural 
system. 
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